Mark scheme – Bonding and Structure

Questi on		ti	Answer/Indicative content	Mar ks	Guidance
1		i	 CARE: Check that lone pairs on Cl and O are included Cl (×2) has 6 non-bonded electrons (3 LPs) O has 4 non-bonded electrons (2 LPs) 	1	 NOTE: O and Cl electrons MUST be shown differently from C electrons (e.g. expected answer) IGNORE inner shells ALLOW diagram with missing C, O or Cl symbols. For C=O bond, ALLOW sequence × × •• ALLOW non-bonding electrons unpaired Examiner's Comments Most candidates attempted a dot-and-cross diagram of a COCl₂ molecule, with ionic representations being rare. Candidates should take care to include any lone pairs in their diagrams. Omission of the O and Cl lone pairs was the most common error.
		ii	Shape Trigonal planar √ Number of bonded regions (C has) 3 electron (dense) regions OR 3 bonding regions √ Electron pair repulsion (Seen anywhere)	3	ALLOW bp for bonded pair ALLOW 3 bonded pairs (BOD) OR 3 sigma bonds OR 2 bonded pairs and 1 double bond OR 4 bonded pairs including a double bond IGNORE bonded atoms IGNORE just 3 bonds ALLOW alternative phrases/words for repel e.g. 'push apart' IGNORE electrons repel (pairs needed) DO NOT ALLOW atoms repel Examiner's Comments
			electron pairs/bonded pairs/bonded regions repel OR electron pairs move as far apart as possible OR bonds repel √		nis question discriminated well. Most candidates recognised that a COCl ₂ molecule has a trigonal planar shape. The best answers explained this shape in terms of the three electron regions around the central C atom and their repulsion.

		Total	4	
2	a	$\begin{bmatrix} Na \\ Na \end{bmatrix}^{+}$ $\begin{bmatrix} v \\ Na \end{bmatrix}^{+}$ $\begin{bmatrix} v \\ s \end{bmatrix}^{+}$ Na shown with either 0 or 8 electrons AND S shown with 8 electrons with 6 dots and 2 crosses (or vice versa) $$ Correct charges $$	2	ALLOW 2[Na] ⁺ ALLOW [Na] ⁺ 2 Brackets not required For first mark, if eight electrons are shown around Na, the 'extra' electrons around S must match the symbol chosen for the electrons for Na. IGNORE inner shells Circles not required <u>Examiner's Comments</u> The majority of candidates obtained full marks on this question. The most common errors were incorrect charges or covalent structures.
	b	Na2SNaSMelting point / °C118098113Type of structuregiantgiantsimpl eConductivit y of solidpoorgoo dpoorConductivit y of liquidgoo dgoo dpoor✓✓✓✓One mark for each correct columnUmbrokenUmbroken	3	Mark by COLUMN <u>Examiner's Comments</u> The majority of candidates obtained 2 or 3 marks on this question. Many candidates seemed unaware that sodium was a metal.
		Total	5	
3		$\begin{bmatrix} Ba \end{bmatrix}^{2+} \begin{bmatrix} \mathbf{x} & \mathbf{c} \\ \mathbf{x} & \mathbf{c} \end{bmatrix}^{-}$ Barium ion with no (or eight) electrons AND two chloride ions with correct <i>dot-</i> <i>and-cross</i> octet (1) Correct charges (1)	2	For the first mark, if eight electrons are shown in the cation then the 'extra' electron in the anion must match the symbol chosen for electrons in the cation ignore inner shell electrons Circles not essential allow One mark if both electron arrangement and charges are correct but only one C/ is drawn allow 2[C/] ⁻ (Bracket not required)

i i	Barium hydroxide OR barium oxide OR barium carbonate	1	allow Ba(OH) ₂ OR BaO OR BaCO ₃
	Total	3	
i	$P_4 + 6Br_2 \rightarrow 4PBr_3$	1	ignore state symbols
i	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 3.01×10^{21} award 3 marks $M_r(PBr_3) = 270.7 \text{ (g mol}^{-1}) (1)$ $n(PBr_3) = 1.3535 / 270.7 = 5.000 \times 10^{-3} \text{ mol (1)}$ number of molecules = $5.000 \times 10^{-3} \times 6.02 \times 10^{23} = 3.01 \times 10^{21}$ molecules (1)	3	If there is an alternative answer, check to see if there is any ecf credit possible using working below. allow in working shown as $28.1 + 35.5 \times 4$ allow ecf from incorrect molar mass of PBr ₃ allow 0.005(00) (mol) for two marks allow ecf for incorrect amount of PBr ₃ allow calculator value or rounding to 3 significant figures or more but ignore 'trailing' zeroes, e.g. 0.200 allowed as 0.2 do not allow any marks for: $1.3535 \times 6.02 \times 10^{23} = 8.15 \times 10^{23}$
i i	Pyramidal (1) (because there are) 3 bonded pairs and 1 lone pair (around the central phosphorus atom) (1) and electron pairs repel each other as far apart as possible so will take on a tetrahedral arrangement (giving a pyramidal shape overall) (1)	3	
	Total	7	
	Displayed formulae of CH ₃ OH and H ₂ O AND C-O AND O-H polar bonds shown on CH ₃ OH molecule with δ + and δ - AND Both O-H polar bonds shown on H ₂ O molecule with δ + and δ - \checkmark Two lone pairs shown on both oxygen atoms AND Hydrogen bond / H-bond labelled and in the correct position between the H on water and the oxygen long pair on methanol.	2	Must be displayed formulae Hydrogen bond H $\rightarrow f \rightarrow $
		iBarium hydroxide OR barium oxide OR barium carbonateiTotaliTotaliP4 + 6Br2 \rightarrow 4PBr3iFIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 3.01 × 10 ²¹ award 3 marksiiFIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 3.01 × 10 ²¹ award 3 marksiiP(PBr3) = 270.7 (g mol ⁻¹) (1) iiin(PBr3) = 1.3535 / 270.7 = 5.000 × $10^{-3} mol (1)$ number of molecules = 5.000 × $10^{-3} mol (1)$ number of molecules = 5.000 × $10^{-3} x 6.02 × 10^{23} = 3.01 × 10^{21}$ molecules (1)iiPyramidal (1) (because there are) 3 bonded pairs and 1 lone pair (around the central phosphorus atom) (1)iiand electron pairs repel each other as far apart as possible so will take on a tetrahedral arrangement (giving a pyramidal shape overall) (1)iiDisplayed formulae of CH ₃ OH and H ₂ O AND C-O AND O-H polar bonds shown on CH ₃ OH molecule with δ + and δ - AND Both O-H polar bonds shown on H ₂ O molecule with δ + and δ - $< \sqrt$ Two lone pairs shown on both oxygen atoms AND Hydrogen bond / H-bond labelled and in the correct position between the H on water and the oxygen lone pair on methanol \checkmark	Barium hydroxide OR barium oxide OR barium carbonate1iTotal3i $P_4 + 6Br_2 \rightarrow 4PBr_3$ 1i $P_4 + 6Br_2 \rightarrow 4PBr_3$ 1iFIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 3.01 × 10 ²¹ award 3 marks1ii $H(PBr_3) = 270.7 (g mol^{-1}) (1)$ i3ii $M_1(PBr_3) = 1.3535 / 270.7 = 5.000 \times 10^{-3} \propto 6.02 \times 10^{23} = 3.01 \times 10^{21}$ molecules (1)3ii $Pyramidal (1)$ (because there are) 3 bonded pairs and 1 lone pair (around the central phosphorus atom) (1) and electron pairs repel each other as far apart as possible so will take on a tetrahedral arrangement (giving a pyramidal shape overall) (1)3iiDisplayed formulae of CH ₃ OH and H_2O AND C-O AND O-H polar bonds shown on CH ₃ OH molecule with δ^+ and δ^- AND Both O-H polar bonds shown on H_2O molecule with δ^+ and δ^- AND Hydrogen bond / H-bond labelled and in the correct position between the H on water and the oxygen lone pair on methanol \checkmark 2

					formulae, dipoles were often missing from the methanol molecule, lone pairs were absent from oxygen atoms and the hydrogen bond was marked in an incorrect position. This resulted in a low scoring question for a diagram that had produced much higher scores when asked on papers from the legacy specification.
	·		Total	2	
					Mark each point independently
6		i	Tetrahedral AND 109.5(°) ✓ four bonded pairs repel OR four bonds repel ✓	2	ALLOW range 109 – 110° IGNORE surrounded by four atoms IGNORE four areas of electron charge repel IGNORE four electron pairs repel (<i>one could be lp</i>) DO NOT ALLOW atoms repel Examiner's Comments This question was poorly answered. Many candidates ignored the instruction to give the shape around the carbon atom in the alkyl group and instead focussed on the bond angle and shape around the carbonyl carbon. Even candidates who could identify the correct shape and bond angle did not explain that it is due to the repulsion between four bonding pairs.
		i i	104.5(°) ✓	1	ALLOW range 104 – 105° Examiner's Comments Generally well answered but many examples of incorrect bond angles including 107, 120 and 180 were seen here.
			Total	3	
7		i	<u>Electrostatic</u> <u>attraction</u> between positive and negative ions √	1	ALLOW oppositely charged ions ALLOW cations and anions ALLOW '+' for positive and '-' for negative IGNORE references to metal and non-metal IGNORE references to transfer of electrons Examiner's Comments The specification describes ionic bonding as an electrostatic attraction and a small proportion of answers were missing this key phrase.
		ii	$\begin{bmatrix} Ba \end{bmatrix}^{2+} \begin{bmatrix} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \end{bmatrix}^{2-}$ Ba shown with either 0 or 8 electrons AND O shown with 8 electrons with 6	2	For first mark, if eight electrons are shown around Ba, the 'extra' electrons around O must match the symbol chosen for the electrons for Ba. IGNORE inner shells Circles not required Brackets not required

	dots and 2 crosses (or vice versa) ✓ Correct charges on both ions ✓		Examiner's Comments Covalent bonding diagrams were not common and this question was well answered by the vast majority of candidates.
i	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 5.89×10^{21} award 2 marks for calculation <i>Moles of barium oxide</i> n(BaO) =1.50/153.3 OR 9.78 × 10 ⁻³ \checkmark <i>Number of barium ions</i> (9.78 × 10 ⁻³ × 6.02 × 10 ²³) = 5.89 × 10 ²¹ \checkmark 3 SF AND standard form required	2	ALLOW 0.00978 up to calculator value 0.009784735 ALLOW ECF from incorrect moles of BaO Common incorrect answers are shown below IF 137.3 is used for the molar mass ALLOW 1 mark total for 6.58 × 10 ²¹ (0.010924981 mol) OR 6.56 × 10 ²¹ (0.0109 mol) IF 153 is used for the molar mass ALLOW 1 mark total for 5.90 × 10 ²¹ Examiner's Comments Use of the relative mass of barium to calculate moles of barium oxide was a common error but these candidates were usually able to pick up one mark for correctly multiplying their moles by the Avogadro constant. Some candidates correctly calculated moles but then divided by two thus losing the final mark.
	Total	5	
			ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW reference to specific compounds e.g. comparing methane and methanol Second marking point requires BOTH types of intermolecular forces in
а	Alcohols have hydrogen bonds (and van der Waals' forces) √ Hydrogen bonds are stronger than van der Waals' forces (in alkanes)	2	 Second marking point requires BOTH types of Intermolecular forces in response i.e comparison of hydrogen bonds AND van der Waals is essential DO NOT ALLOW the second mark for a comparison of van der Waals' and hydrogen bonds between alcohols and water ALLOW more energy required to break hydrogen bonds than van der Waals' forces ALLOW it is harder to overcome the hydrogen bonds than van der Waals'
а	Alcohols have hydrogen bonds (and van der Waals' forces) √ Hydrogen bonds are stronger than van der Waals' forces (in alkanes)	2	Second marking point requires BOTH types of interm response i.e comparison of hydrogen bonds AND var essential DO NOT ALLOW the second mark for a comparison hydrogen bonds between alcohols and water ALLOW more energy required to break hydrogen bor Waals' forces ALLOW it is harder to overcome the hydrogen bonds

					Many candidates attributed the difference in boiling point between alkanes and alcohols to the relative strength of hydrogen bonds compared with van der Waals' forces. Weaker responses simply identified alcohols as being able to form hydrogen bonds, but failed to compare these with van der Waals' forces.
					ANNOTATE ANSWER WITH TICKS AND CROSSES Both answers need to be comparisons ALLOW ORA throughout
			2-methylpropan-1-ol has less surface (area of) contact OR		Reference to just surface area / closeness of molecules is not sufficient
	b		fewer points of contact \checkmark	2	IGNORE reference to H bonds IGNORE less energy is needed to break bonds
			2-methylpropan-1-ol has fewer / weaker van der Waals' forces		Examiner's Comments
			OR less energy required to break van der Waals' forces in 2- methylpropan-1-ol √		Most candidates recognised that 2-methylpropan-1-ol is branched and communicated both marking points succinctly. Weaker responses identified that 2-methypropan-1-ol would have weaker intermolecular forces, but failed to specify these as van der Waals' forces.
			Total	4	
					ALLOW multiples
					IGNORE state symbols (even if wrong)
9		i	$NiO + 2HNO_3 \rightarrow Ni(NO_3)_2 + H_2O \checkmark$	1	Examiner's Comments
					This part was surprisingly poorly answered. Common errors included incorrect formulae for nickel(II) oxide and HNO_3 , and H_2 shown as a product instead of H_2O .
					NOT REQUIRED • Charge ('-') • Brackets • Circles
		i i	Global rules i • N and O electrons must be shown differently, e.g. • for N and × for O • 'Extra' electron shown with different symbol	2	IGNORE inner shells ALLOW rotated diagram ALLOW diagram with missing N or O symbols. Shown as diagram on
					anyway
			MARKING Bonding around central N atom ✓		In N=O bond, ALLOW sequence × × • •

		 5 electrons for N shown as • OR × 3 electrons for O, different from N as • OR × 		In N–O bond, ALLOW 'extra' electron with different symbol for O electron ALLOW non-bonding electrons unpaired If 'extra' electron has been used in N–O [–] bond, N–O [–] oxygen MUST have 6 nb 'O' electrons
		 N=O bond with 2 N electrons AND 2 O electrons N→O bond with 2 N electrons N–O bond with 1 N electron AND 1 O electron 		ALLOW 'extra' electron as • OR × if it has been labelled 'extra electron' or similar Examiner's Comments Most candidates attempted this novel 'dot-and-cross' diagram. Many candidates correctly showed the bonding electrons around the central nitrogen atom. The remaining electrons around the oxygen atoms proved to be more difficult, with many omitting to show the 'extra electron'.
		 Non-bonded (nb) electrons around 3 O atoms √ N=O oxygen has 4 nb 'O' electrons N→O oxygen has 6 nb 'O' electrons N-O⁻ oxygen has 5 nb 'O' electrons AND 1 'extra' electron with different symbol 		
		Total	3	
1 0	i	Ca(OH)₂ OR Calcium hydroxide OR CaO OR Calcium oxide √ 1	1	ALLOW Calcium carbonate OR CaCO ₃ Examiner's Comments The unusual equation involving P4 molecules was answered well. Weaker candidates assumed that phosphorus was monatomic and consequentially lost credit.
	i	6Ca + P₄ ◊ 2Ca₃P₂ √	1	ALLOW multiples IGNORE state symbols Examiner's Comments This potentially difficult dot-and-cross diagram of the ions present was done well by candidates.

	i	$3x \begin{bmatrix} xx \\ x Ca \\ x \\ xx \end{bmatrix}^{2+} 2x$ Ca with 8 (or no) electrons AND	2	For first mark: If 8 electrons are shown on the cation then the extra electron in the anion must match the symbol chosen for the electrons in the cation. IGNORE inner shells IGNORE circles ALLOW one mark if both electron arrangements and charges are correct
	i	phosphide ion with dot-and-cross outermost octet ✓ Three Ca ions AND two phosphide ions with correct charges √		ALLOW (brackets not required) 3[Ca ²⁺] 3[Ca] ²⁺ [Ca ²⁺] ₃
				2[P ³⁻] 2[P] ³⁻ [P ³⁻] ₂
				DO NOT ALLOW [Ca ₃] ²⁺ [3Ca] ²⁺ [Ca] ³²⁺ [P ₂] ^{3–} [2P] ^{3–} [P] ₂
		Total	4	
				ALLOW δ2+ OR δ+ δ+ on O
1 1	i	δ− on each F AND δ+ on O \checkmark	1	Examiner's Comments
				The application of dipoles to the molecule was done well.
	i	Shape: non-linear	1	For shape ALLOW alternative words eg 'V-shaped' 'bent' 'angular'. In the absence of words allow a diagram with a non-linear shape F – O – F bond angle > 90°. For bond angle ALLOW 106> bond angle ≥102 (Actual = 102°)
	1	Bond angle: 104.5° √		Examiner's Comments
				Only a few candidates failed to realise that two bonding pairs and two non- bonding pairs would lead to the molecule being bent-shaped with an expected bond angle of 104.5°.
				ALLOW 2+
	i			Examiner's Comments
	i	+2 √	1	The question told candidates that fluorine was the most electronegative element which should have led them to realising that oxygen's oxidation state had to be a positive number. Many chose to ignore this despite allocating the oxygen atom a partial positive charge in part (i).
		Total	3	
1 2		Simple molecular lattice √	1	ALLOW 'simple covalent' OR 'simple molecular' ie 'simple' must be seen. DO NOT ALLOW 'simple covalent <i>bonds</i> '

				Examiner's Comments
				Nearly all candidates understood that halogens consisted of simple molecular lattices.
		Total	1	
				ALLOW all dots or all crosses.
1		XN X N	1	Examiner's Comments
3		×		Nearly all were able to draw an accurate 'dot-and-cross' diagram of a nitrogen molecule.
		Total	1	
1 4		104.5° √	1	ALLOW 104–105
		(oxygen atom) has two bond pairs and two lone pairs \checkmark	1	ALLOW lp and bp ALLOW bonding regions for bond pairs
		Bonded pairs / lone pairs / electron pairs repel \checkmark	1	IGNORE bonds repel / electrons repel DO NOT ALLOW atoms repel
				ALLOW alternative phrases / words to repel e.g. 'push apart'
		Lone pairs repel more than bonding pairs √		Examiner's Comments
		NOTE : 'Lone pairs repel more than bonding pairs' would gain the last two marking points	1	Although the weaker candidates appear to have little idea of the bond angles found in simple molecules many were able to pick up one or two marks for communicating that lone pairs repel more than bonding pairs. The more able candidates also described the number of lone pairs and bonding pairs and obtained the correct bond angle.
		Total	4	
				ALLOW ORA but comparison should be used for the all marks DO NOT ALLOW Phosphorus has more electrons in the outer shell or larger electron cloud.
				IGNORE Phosphorus molecules are bigger or have greater <i>M</i> _r .
1		Phosphorus has		Examiner's Comments
1 5		Phosphorus has more electrons √	1	It as pleasing to see that the vast majority of candidates were able to use the terms London forces or induced dipole–dipole interactions rather than van der Waals as used in the legacy specification. Unfortunately, many candidates also chose to discuss how the strength of the covalent bonds increased melting points rather than just considering the intermolecular forces. Answers were either very good or very poor. Where a candidate only scored two marks it was mainly due to not discussing the influence the number of electrons has on the strength of the force.
		Stronger London forces OR	1	ALLOW 'more' for 'stronger' ALLOW stronger van der Waals' / vdW forces

2.2.2 Bonding and Structure

	Stronger induced dipole(-dipole) interactions √		
	More energy required to break the intermolecular forces / bonds OR London forces √	1	DO NOT ALLOW attraction between atoms-or that covalent bonds are broken
	Total	3	
			<i>Quality of written communication:</i> 'molecule(s)' or 'intermolecular' spelled correctly once and used in context for the third marking point.
	<i>M1 NH₃ forces mark</i> NH₃ has hydrogen bonding √		ALLOW H-bonding for hydrogen bonding IGNORE van der Waals' forces AND permanent dipoles in M1 IGNORE covalent bonds for M1 AND M2
			ALLOW, for van der Waal's: vdWs OR induced dipole
			temporary OR instantaneous dipole (-dipole) forces
	M2 F ₂ AND Br ₂ forces mark		ALLOW IN INCES. AUACIONS ON INCERCIONS,
	F ₂ AND Br ₂ have van der Waals' (forces) √		DO NOT ALLOW M3, M4 or M5 if covalent OR ionic bonds are the forces between the particles in that mark
			M3 can be seen anywhere
			eg in M1 NH ₃ has hydrogen bonding between molecules AND the
			Intermolecular force in Br ₂ is stronger than that of F_2
			determined by strength of <i>intermolecular bonding</i> '
			eg 'All these <i>molecules</i> are <i>held</i> together by weak forces'
			If correct force is given in M2 ALLOW , for M4, 'intermolecular force in Br_2
1	MO Turne of norticle month	5	is stronger than that in F ₂ '
6	Forces OR attractions are between	5	ALLOW more van der Waals' for greater van der Waals'
	molecules OR are intermolecular for ammonia		ALLOW more shells of electrons
	AND		IGNORE 'permanent dipoles' in NH ₃ for M5 if quoted in addition to
	Forces UR attractions are between molecules OR are intermolecular		nyarogen bonding
	for fluorine OR for bromine √		If correct force is given in M1 AND M2 ALLOW, for M5, 'intermolecular
			force in Br_2 is stronger than that in NH_3 '
	M4 Bro / Fo comparison mark		AND 'intermolecular force in NH_3 is stronger than that in F_2 '
	The van der Waals' forces in Br ₂		If incorrect intermolecular force is given in M1 OR M2 ALLOW this as ECF
	are greater than in F₂		for M5 but DO NOT ALLOW if the comparison is based only on van der
	AND		Waals' forces
	Because bromine has more electrons than fluorine √		Eg DO NOT ALLOW the van der Waals' forces in bromine are stronger than those in ammonia which in turn are stronger than those in fluorine
			Examiner's Comments
	M5 Br ₂ / NH ₃ / F ₂ comparison mark		This was a challenging question. Most candidates know that ammenia has
	are greater than hydrogen bonding		hydrogen bonding and many also knew that the intermolecular forces in F ₂
	in NH ₃		and Br ₂ were van der Waals. Hereafter, the marks proved more difficult to
	AND		award. The next most common mark was for linking the strength of van der
	hydrogen bonding in NH ₃ is		Waals' forces between F_2 and Br_2 to the number of electrons. The mark for

		stronger than van der Waals' forces in F₂ ✔		establishing that the forces acted between molecules was often missed as the candidates simply did not really address this part of the question despite being told to include the particles involved in their answers. The final mark for comparing the strength of intermolecular forces between all three molecules was very rarely awarded. Weaker candidates relied upon the false mantra of 'van der Waals' forces are weaker than hydrogen bonding' which the data clearly disproved. Other candidates attempted to explain the relative strength of the intermolecular forces solely in terms of the strength of van der Waals' forces between all three types of molecule. Only the most able students were able to secure full marks on this question.
		Total	5	
1 7	i	The ability of an atom to attract electrons ✓ (Electron pair) in a (covalent) bond ✓	2	 ALLOW 'Measure' for ability ALLOW 'attraction' for 'ability to attract' ALLOW 'The ability of an atom to attract a shared pair of electrons' for two marks Examiner's Comments This definition enabled many candidates to pick up both marks. Where errors did arise they tended to be from not making clear that the attraction has to be for the electrons in the covalent bond or for there to be confusion
	i	δ_{CI} δ	2	For a 3D structure, For bond in the plane of paper, a solid line is expected: For bond out of plane of paper, a solid wedge is expected: For bond into plane of paper, a solid wedge is expected: For bond into plane of paper, ALLOW: ALLOW: ALLOW a hollow wedge for 'in bond' OR an 'out bond', provided it is different from the other in or out wedge e.g.: ALLOW any 3D representation with a minimum of one bond into the plane of paper AND minimum of one out of plane of paper

					IGNORE dipole charges on H
					Examiner's Comments
					It was surprising to see just how many different versions of 3-D shape were presented. The dipole mark was frequently lost usually due to omission of a partial charge on the central C atom.
		i i i	The dipoles do not cancel out OR Because the molecule is non-symmetrical ✓	1	ALLOW partial charges do not cancel IGNORE charges do not cancel ALLOW (the more) electronegative atoms are on one side of the molecule Examiner's Comments Most candidates correctly focussed upon the fact that the molecule was not symmetrical.
			Total	5	
1 8	а	i	Repeating pattern ✓ of oppositely charged ions ✓	2	 ALLOW 'regular' OR 'alternating' OR 'uniform (arrangement)' for 'repeating pattern' ALLOW positive and negative ions OR aluminium ions and fluoride ions ALLOW oppositely charged ions from a labelled diagram Examiner's Comments Most candidates were quick to describe ionic bonding by making reference to ions of opposite charge and so were awarded the first mark. Very few went on to describe the repeating or regular nature of the lattice.
			Al with 8 (or no) outermost electrons	2	For first mark: If 8 electrons are shown in the cation then the 'extra' electron in the anion must match the symbol chosen for the electrons in the cation IGNORE inner shells IGNORE circles ALLOW one mark if both electron arrangements and charges are correct but only one F is drawn. ALLOW one mark if incorrect symbol is the only error, unless ECF from 2(a) in which both marks are available DO NOT ALLOW any marks for BF ₃ ALLOW 3[F ⁻] 3[F] ⁻ [F ⁻] ₃ (brackets not required) DO NOT ALLOW [F ₃] ⁻ [F ₃] ³⁻ [3F] ³⁻ [F] ₃ ⁻ Examiner's Comments
			AND 3 × fluoride (ions) with ' <i>dot-and-</i> <i>cross</i> ' outermost octet ✓ Correct charges ✓		nis question was answered by the majority of candidates. It is noteworthy, however, that some candidates gave unacceptable versions of the diagram when attempting to show the presence of three fluoride ions e.g.[F] ₃ ⁻ suggests one anion. with a single negative charge, consisting of three F species.
	b	i	A shared pair of electrons.	1	Examiner's Comments

				The quality of answers to this question were very high. Only the weakest of candidates failed to state that it is a pair (or two) of electrons which are shared.
	i	Br Br x B x Br • ✓	1	Examiner's Comments As with the previous ' <i>dot-and-cross</i> ' diagram this was well answered. Only a very few attempted to show the molecule's bonding as ionic. Some candidates did lose the mark by adding a lone pair to the boron atom.
		Total	6	
19	i	Reaction 1: Ba + $2H_2O \rightarrow$ Ba(OH) ₂ + $H_2 \checkmark$ Reaction 2: Ba ₃ N ₂ + $6H_2O \rightarrow$ 3Ba(OH) ₂ + $2NH_3$ Correct products \checkmark Balancing \checkmark	3	Ignore state symbols Examiner's Comments Both equations were relatively challenging. Reaction 1 was a direct question about reactions of Group 2 elements. Reaction 2 demanded a higher level of application based upon information given. Many identified the alkaline gas as NH3, but then incorrectly assumed that the alkaline solution was BaO instead of Ba(OH) ₂ . Weaker candidates suggested equations with hypothetical species that could not have born any relation to formulae that they might have encountered before.
	i	Giant ionic (lattice) √	1	 ALLOW 'Giant lattice with ionic bonds' ALLOW 'Giant ionic bonds' DO NOT ALLOW 'atoms or molecules or dipoles' Examiner's Comments This question was relatively well answered, although some candidates did negate the mark by referring to molecules of Ba₃N₂ either directly or by indirect reference to intermolecular forces.
	iii		1	Ba must have a 2+ charge Ba can be with or without octet. IGNORE lack of charge on $O_2^{2^-}$ ion

One Hydrogen bond between H in one water molecule and a lone pair of O in an adjacent water molecule ✓		All Hydrogen bonds must hit a lone pair Hydrogen bond does NOT need to be labelled but it must be different from the covalent bond if it is not labelled ALLOW H-bond as label ALLOW only one lone pair on O atom ALLOW additional, correctly drawn Hydrogen bonded water molecules with correct dipoles DO NOT ALLOW more than two lone pairs on O atom Examiner's Comments Nearly all candidates answered this familiar question very well. Failure to show full dipoles on both molecules was the most common omission by some margin, whilst omitting to show a lone pair or not showing it involved in the hydrogen bond was seen comparatively more rarely. ALLOW ice floats (on water) ALLOW ice contracts when it melts
Property 1 Ice is less dense than water √ Explanation 1 The molecules in ice are held apart by hydrogen bonds √ OR ice has an open lattice OR structure Property 2 Ice has a relatively high melting point √ Explanation 2 Hydrogen bonds are relatively strong OR Hydrogen bonds are stronger (than other intermolecular attractions or forces) OR More energy is needed to overcome hydrogen bonding	4	 ALLOW ice (water) has a higher melting point than expected OR predicted ALLOW other expressions which convey that the melting point is anomalously high e.g. 'Ice has an unusually high melting point' IGNORE boiling point IGNORE the following unqualified statements 'Ice has a higher melting point' or 'Ice has a high melting point' IGNORE references to surface tension as a property IGNORE explanations of surface tension ALLOW hydrogen bonds are the strongest intermolecular attraction or force DO NOT ALLOW 'hydrogen bonds are strong' but ALLOW this as part of a qualified statement (e.g. 'hydrogen bonds are strong compared with weak van der Waals forces') Examiner's Comments This question proved to be one of the more challenging ones on this paper. Of the possible properties of ice, the fact that ice is less dense than water was quoted often and was then supported by the correct explanation. It was when it came to discussing the anomalous melting point of water that candidates found it more difficult. Weaker candidates were content to give a very brief account, simply saying that ice's melting point was high (0°C is not a particularly high temperature) because hydrogen bonds are strong (a hydrogen bond is not a strong bond in comparison to a typical ionic bond). Such answers lacked the required comparison in terms of this property relative to other small molecules or of the strength of the hydrogen bonds in relation to other intermolecular forces.

	b		×× × × × × × × × × × × × × × × × × × ×	1	Lone pairs on O must be seen Lone pairs may be seen as 4 individual electrons ALLOW correct use of three different symbols Examiner's Comments The <i>'dot-and-cross'</i> diagram of the bonding in CO ₂ was well known.
2		İ	(Trigonal) Pyramidal ✓ (Sb has) three bonding pairs AND one lone pair of electrons ✓ Pairs of electrons repel ✓	3	ALLOW alternative phrases / words to repel eg 'push apart' ALLOW lone pairs repel more than bonding pairs ALLOW bonds for bonded pairs ALLOW lp and bp IGNORE electrons repel DO NOT ALLOW atoms repel Examiner's Comments This question was well answered. Many candidates approached this question in a systematic manner and consequently gained marks for stating the number of bonding and lone pairs around the nitrogen atom and used this to determine the molecular shape. Centres are advised to demonstrate this method of addressing this type of question
		i	There is a difference in electronegativities (between Sb and C/) OR (Sb-Cl) bonds are polar OR have a dipole	2	ALLOW Because C/ is more electronegative (than Sb) OR Because Sb is more electronegative (than C/) ALLOW description that electrons are drawn along a covalent bond IGNORE single δ + or single δ - for dipole IGNORE diagram if M1 awarded in text
			OR Dipoles seen on the diagram √		ALLOW partial charges do not cancel
			The molecule is not symmetrical AND dipoles do not cancel ✓		IGNORE references to lone pair causing dipoles Examiner's Comments This superties uses relatively a shell as size with the superior of a size of the s
					i nis question was relatively challenging with the need for the candidate first to refer to the polar nature of the Sb—Cl bond and then to note that the shape of the molecule prevents these individual dipoles from cancelling out. It was rare for candidates picked up both marks.

2.2.2 Bonding and Structure

			Total	5	
2 2	а	i	Boiling point of H2S lower than H2O H2O has hydrogen bonding (1) Hydrogen bonding is stronger OR more energy required to overcome hydrogen bonding (1) Boiling point of H2S lower than H2Se induced dipole-dipole interactions / London forces in H2S are weaker (1) H2S has fewer electrons OR less energy required to overcome induced dipole-dipole interactions (1)	4	ora throughout do not allow covalent bonds break allow instantaneous–induced dipole interactions allow dispersion forces allow van der Waals' / vdW ignore permanent dipole–dipole do not allow covalent bonds break
		i i	Any value between 285 and 335 (K) (1)	1	Graph must show an extrapolation line
	Ь		MgO: giant ionic (1) SO ₂ : simple molecular (1) ionic bonds (in MgO) are (much) stronger than intermolecular bonds (in SO ₂) (1) ionic bonds (in MgO) need more energy to overcome / break (than intermolecular forces in SO ₂) (1)	4	ora throughout For intermolecular bonds allow induced dipole-dipole interactions / London forces / permanent dipole-dipole interactions / van der Waals' forces do not allow hydrogen bonds ignore covalent bonds in SO ₂ unless statement that they break: CON
			Total	9	
2 3			three shared electron pairs plus a lone pair on C and O (1) one of the shared pairs shown as dative – i.e. both with the same type of dot / cross as the other	2	mark can be awarded if either lone pair is missing, but there must be three shared pairs
			electrons around the O (1) Total	2	

2.2.2 Bonding and Structure