Mark scheme - Bonding and Structure

		Answer/Indicative content	Mar ks	Guidance
1		CARE: Check that lone pairs on Cl and O are included - $\mathrm{Cl}(\times 2)$ has 6 non-bonded electrons (3 LPs) - O has 4 non-bonded electrons (2 LPs)	1	NOTE: O and Cl electrons MUST be shown differently from C electrons (e.g. expected answer) IGNORE inner shells ALLOW diagram with missing C, O or Cl symbols. For $\mathrm{C}=\mathrm{O}$ bond, ALLOW sequence $\times \times \cdots$ ALLOW non-bonding electrons unpaired Examiner's Comments Most candidates attempted a dot-and-cross diagram of a COCl_{2} molecule, with ionic representations being rare. Candidates should take care to include any lone pairs in their diagrams. Omission of the O and Cl lone pairs was the most common error.
		Shape Trigonal planar \checkmark Number of bonded regions (C has) 3 electron (dense) regions OR 3 bonding regions \checkmark Electron pair repulsion (Seen anywhere) electron pairs/bonded pairs/bonded regions repel OR electron pairs move as far apart as possible OR bonds repel $\sqrt{ }$	3	ALLOW bp for bonded pair ALLOW 3 bonded pairs (BOD) OR 3 sigma bonds OR 2 bonded pairs and 1 double bond OR 4 bonded pairs including a double bond IGNORE bonded atoms IGNORE just 3 bonds ALLOW alternative phrases/words for repel e.g. 'push apart' IGNORE electrons repel (pairs needed) DO NOT ALLOW atoms repel Examiner's Comments This question discriminated well. Most candidates recognised that a COCl_{2} molecule has a trigonal planar shape. The best answers explained this shape in terms of the three electron regions around the central C atom and their repulsion.

		Total	4	
2	a	Na shown with either 0 or 8 electrons AND S shown with 8 electrons with 6 dots and 2 crosses (or vice versa) \checkmark Correct charges \checkmark	2	ALLOW $2[\mathrm{Na}]^{+}$ ALLOW [Na$]^{+}{ }^{2}$ Brackets not required For first mark, if eight electrons are shown around Na , the 'extra' electrons around S must match the symbol chosen for the electrons for Na . IGNORE inner shells Circles not required Examiner's Comments The majority of candidates obtained full marks on this question. The most common errors were incorrect charges or covalent structures.
	b	$\mathrm{Na}_{2} \mathrm{~S}$ Na \mathbf{S} Melting point $/{ }^{\circ} \mathrm{C}$ 1180 98 113 Type of structure giant giant simpl e Conductivit y of solid poor goo d poor Conductivit y of liquid goo d goo d poor One mark for each correct column	3	Mark by COLUMN Examiner's Comments The majority of candidates obtained 2 or 3 marks on this question. Many candidates seemed unaware that sodium was a metal.
		Total	5	
3		Barium ion with no (or eight) electrons AND two chloride ions with correct dot-and-cross octet (1) Correct charges (1)	2	For the first mark, if eight electrons are shown in the cation then the 'extra' electron in the anion must match the symbol chosen for electrons in the cation ignore inner shell electrons Circles not essential allow One mark if both electron arrangement and charges are correct but only one C / is drawn allow 2[CI] (Bracket not required)

		Barium hydroxide OR barium oxide OR barium carbonate	1	allow $\mathrm{Ba}(\mathrm{OH})_{2}$ OR BaO OR BaCO_{3}
		Total	3	
4	i	$\mathrm{P}_{4}+6 \mathrm{Br}_{2} \rightarrow 4 \mathrm{PBr}_{3}$	1	ignore state symbols
		FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=3.01 \times 10^{21}$ award 3 marks $\begin{aligned} & M_{r}\left(\mathrm{PBr}_{3}\right)=270.7\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)(1) \\ & n\left(\mathrm{PBr}_{3}\right)=1.3535 / 270.7=5.000 \times \\ & 10^{-3} \mathrm{~mol}(1) \end{aligned}$ number of molecules $=5.000 \times$ $10^{-3} \times 6.02 \times 10^{23}=3.01 \times 10^{21}$ molecules (1)	3	If there is an alternative answer, check to see if there is any ecf credit possible using working below. allow in working shown as $28.1+35.5 \times 4$ allow ecf from incorrect molar mass of PBr_{3} allow $0.005(00)(\mathrm{mol})$ for two marks allow ecf for incorrect amount of PBr_{3} allow calculator value or rounding to 3 significant figures or more but ignore 'trailing' zeroes, e.g. 0.200 allowed as 0.2 do not allow any marks for: $1.3535 \times 6.02 \times 10^{23}=8.15 \times 10^{23}$
		Pyramidal (1) (because there are) 3 bonded pairs and 1 lone pair (around the central phosphorus atom) (1) and electron pairs repel each other as far apart as possible so will take on a tetrahedral arrangement (giving a pyramidal shape overall) (1)	3	
		Total	7	
5		Displayed formulae of $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O}$ AND C-O AND O-H polar bonds shown on $\mathrm{CH}_{3} \mathrm{OH}$ molecule with $\delta+$ and δ - AND Both O-H polar bonds shown on $\mathrm{H}_{2} \mathrm{O}$ molecule with $\delta+$ and δ - Two lone pairs shown on both oxygen atoms AND Hydrogen bond / H-bond labelled and in the correct position between the H on water and the oxygen lone pair on methanol \checkmark	2	Must be displayed formulae IGNORE $\delta+$ shown on other H atoms ALLOW hydrogen bond between the H on methanol (OH) and the oxygen Ione pair on water Examiner's Comment: Candidates did not cope well with the requirement to produce a hydrogen bonding diagram that was expected to match the content of all four of the bullet points listed in the question. Perhaps candidates did not read the question carefully enough but some diagrams did not include displayed

				formulae, dipoles were often missing from the methanol molecule, lone pairs were absent from oxygen atoms and the hydrogen bond was marked in an incorrect position. This resulted in a low scoring question for a diagram that had produced much higher scores when asked on papers from the legacy specification.
		Total	2	
6	i	Tetrahedral AND 109.5(${ }^{\circ}$) four bonded pairs repel OR four bonds repel \checkmark	2	Mark each point independently ALLOW range 109-110º IGNORE surrounded by four atoms IGNORE four areas of electron charge repel IGNORE four electron pairs repel (one could be Ip) DO NOT ALLOW atoms repel Examiner's Comments This question was poorly answered. Many candidates ignored the instruction to give the shape around the carbon atom in the alkyl group and instead focussed on the bond angle and shape around the carbonyl carbon. Even candidates who could identify the correct shape and bond angle did not explain that it is due to the repulsion between four bonding pairs.
		$104.5\left(^{\circ}\right) \checkmark$	1	ALLOW range 104-105 Examiner's Comments Generally well answered but many examples of incorrect bond angles including 107, 120 and 180 were seen here.
		Total	3	
7	i	Electrostatic attraction between positive and negative ions \checkmark	1	ALLOW oppositely charged ions ALLOW cations and anions ALLOW '+' for positive and '-' for negative IGNORE references to metal and non-metal IGNORE references to transfer of electrons Examiner's Comments The specification describes ionic bonding as an electrostatic attraction and a small proportion of answers were missing this key phrase.
		Ba shown with either 0 or 8 electrons AND O shown with 8 electrons with 6	2	For first mark, if eight electrons are shown around Ba , the 'extra' electrons around O must match the symbol chosen for the electrons for Ba. IGNORE inner shells Circles not required Brackets not required

2.2.2 Bonding and Structure

		dots and 2 crosses (or vice versa) Correct charges on both ions \checkmark		Examiner's Comments Covalent bonding diagrams were not common and this question was well answered by the vast majority of candidates.
		FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer $=5.89 \times 10^{21}$ award 2 marks for calculation Moles of barium oxide $\mathrm{n}(\mathrm{BaO})=1.50 / 153.3 \mathrm{OR}$ $9.78 \times 10^{-3} \checkmark$ Number of barium ions $\left(9.78 \times 10^{-3} \times 6.02 \times 10^{23}\right)=$ $5.89 \times 10^{21} \mathrm{~J}$ 3 SF AND standard form required	2	ALLOW 0.00978 up to calculator value 0.009784735 ALLOW ECF from incorrect moles of BaO Common incorrect answers are shown below IF 137.3 is used for the molar mass ALLOW 1 mark total for 6.58×10^{21} (0.010924981 mol) OR 6.56×10^{21} (0.0109 mol) IF 153 is used for the molar mass ALLOW 1 mark total for 5.90×10^{21} Examiner's Comments Use of the relative mass of barium to calculate moles of barium oxide was a common error but these candidates were usually able to pick up one mark for correctly multiplying their moles by the Avogadro constant. Some candidates correctly calculated moles but then divided by two thus losing the final mark.
		Total	5	
8	a	Alcohols have hydrogen bonds (and van der Waals' forces) \checkmark Hydrogen bonds are stronger than van der Waals' forces (in alkanes) \checkmark	2	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW reference to specific compounds e.g. comparing methane and methanol Second marking point requires BOTH types of intermolecular forces in response i.e comparison of hydrogen bonds AND van der Waals is essential DO NOT ALLOW the second mark for a comparison of van der Waals' and hydrogen bonds between alcohols and water ALLOW more energy required to break hydrogen bonds than van der Waals' forces ALLOW it is harder to overcome the hydrogen bonds than van der Waals' forces IGNORE more energy is needed to break bonds Examiner's Comments

				Many candidates attributed the difference in boiling point between alkanes and alcohols to the relative strength of hydrogen bonds compared with van der Waals' forces. Weaker responses simply identified alcohols as being able to form hydrogen bonds, but failed to compare these with van der Waals' forces.
	b	2-methylpropan-1-ol has less surface (area of) contact OR fewer points of contact \checkmark 2-methylpropan-1-ol has fewer / weaker van der Waals' forces OR less energy required to break van der Waals' forces in 2-methylpropan-1-ol \checkmark	2	ANNOTATE ANSWER WITH TICKS AND CROSSES Both answers need to be comparisons ALLOW ORA throughout Reference to just surface area / closeness of molecules is not sufficient IGNORE reference to H bonds IGNORE less energy is needed to break bonds Examiner's Comments Most candidates recognised that 2-methylpropan-1-ol is branched and communicated both marking points succinctly. Weaker responses identified that 2-methypropan-1-ol would have weaker intermolecular forces, but failed to specify these as van der Waals' forces.
		Total	4	
9	i	$\mathrm{NiO}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	ALLOW multiples IGNORE state symbols (even if wrong) Examiner's Comments This part was surprisingly poorly answered. Common errors included incorrect formulae for nickel(II) oxide and HNO_{3}, and H_{2} shown as a product instead of $\mathrm{H}_{2} \mathrm{O}$.
	i	Global rules - $\quad \mathrm{N}$ and O electrons must be shown differently, e.g. - for N and \times for O - 'Extra' electron shown with different symbol MARKING Bonding around central \mathbf{N} atom \checkmark	2	NOT REQUIRED - Charge ('-') - Brackets - Circles IGNORE inner shells ALLOW rotated diagram ALLOW diagram with missing N or O symbols. Shown as diagram on anyway In $\mathbf{N}=\mathbf{O}$ bond, ALLOW sequence $\times \times \cdots$

		- 5 electrons for N shown as • OR × - 3 electrons for O , different from N as - OR \times - $\mathrm{N}=\mathrm{O}$ bond with 2 N electrons AND 20 electrons - $\mathrm{N} \rightarrow \mathrm{O}$ bond with 2 N electrons - $\mathrm{N}-\mathrm{O}$ bond with 1 N electron AND 10 electron Non-bonded (nb) electrons around 30 atoms $\sqrt{ }$ - $\mathrm{N}=\mathrm{O}$ oxygen has 4 nb ' O ’ electrons - $\mathrm{N} \rightarrow \mathrm{O}$ oxygen has 6 nb 'O' electrons - $\mathrm{N}-\mathrm{O}^{-}$oxygen has 5 nb ' O^{\prime} electrons AND 1 'extra' electron with different symbol		In N-O bond, ALLOW 'extra' electron with different symbol for O electron ALLOW non-bonding electrons unpaired If 'extra' electron has been used in $\mathrm{N}-\mathrm{O}^{-}$bond, $\mathrm{N}-\mathrm{O}^{\text {' }}$ oxygen MUST have 6 nb ' O ' electrons ALLOW 'extra' electron as - OR \times if it has been labelled 'extra electron' or similar Examiner's Comments Most candidates attempted this novel 'dot-and-cross' diagram. Many candidates correctly showed the bonding electrons around the central nitrogen atom. The remaining electrons around the oxygen atoms proved to be more difficult, with many omitting to show the 'extra electron'.
		Total	3	
	i	$\mathrm{Ca}(\mathrm{OH})_{2}$ OR Calcium hydroxide OR CaO OR Calcium oxide \checkmark 1	1	ALLOW Calcium carbonate $\mathrm{OR} \mathrm{CaCO}_{3}$ Examiner's Comments The unusual equation involving P4 molecules was answered well. Weaker candidates assumed that phosphorus was monatomic and consequentially lost credit.
		$6 \mathrm{Ca}+\mathrm{P}_{4} \diamond 2 \mathrm{Ca}_{3} \mathrm{P}_{2} \checkmark$	1	ALLOW multiples IGNORE state symbols Examiner's Comments This potentially difficult dot-and-cross diagram of the ions present was done well by candidates.

2.2.2 Bonding and Structure

	i	$3 x\left[\begin{array}{c} x x \\ x_{x}^{x} \\ x \\ x \\ x x \end{array}\right]_{x}^{2+}$ Ca with 8 (or no) electrons AND phosphide ion with dot-and-cross outermost octet \checkmark Three Ca ions AND two phosphide ions with correct charges \checkmark	2	For first mark: If 8 electrons are shown on the cation then the extra electron in the anion must match the symbol chosen for the electrons in the cation. IGNORE inner shells IGNORE circles ALLOW one mark if both electron arrangements and charges are correct but only one of each ion is drawn. ALLOW (brackets not required) $3\left[\mathrm{Ca}^{2+}\right] 3[\mathrm{Ca}]^{2+}\left[\mathrm{Ca}^{2+}\right]_{3}$ $2\left[\mathrm{P}^{3-}\right] 2[\mathrm{P}]^{3-}\left[\mathrm{P}^{3-}\right]_{2}$ DO NOT ALLOW $\left[\mathrm{Ca}_{3}\right]^{2+}[3 \mathrm{Ca}]^{2+}[\mathrm{Ca}]^{32+}$ $\left[\mathrm{P}_{2}\right]^{3-}[2 \mathrm{P}]^{3-}[\mathrm{P}]_{2}$
		Total	4	
1 1	i	δ - on each F AND $\delta+$ on $\mathrm{O} \checkmark$	1	ALLOW $\delta 2+$ OR $\delta+\delta+$ on O Examiner's Comments The application of dipoles to the molecule was done well.
		Shape: non-linear AND Bond angle: $104.5^{\circ} \checkmark$	1	For shape ALLOW alternative words eg 'V-shaped' 'bent' 'angular'. In the absence of words allow a diagram with a non-linear shape $\mathrm{F}-\mathrm{O}-\mathrm{F}$ bond angle $>90^{\circ}$. For bond angle ALLOW 106> bond angle ≥ 102 (Actual $=102^{\circ}$) Examiner's Comments Only a few candidates failed to realise that two bonding pairs and two nonbonding pairs would lead to the molecule being bent-shaped with an expected bond angle of 104.5°.
	i	$+2 \checkmark$	1	ALLOW 2+ Examiner's Comments The question told candidates that fluorine was the most electronegative element which should have led them to realising that oxygen's oxidation state had to be a positive number. Many chose to ignore this despite allocating the oxygen atom a partial positive charge in part (i).
		Total	3	
		Simple molecular lattice \checkmark	1	ALLOW 'simple covalent' OR 'simple molecular' ie 'simple' must be seen. DO NOT ALLOW 'simple covalent bonds'

2.2.2 Bonding and Structure

				IGNORE dipole charges on H Examiner's Comments It was surprising to see just how many different versions of 3-D shape were presented. The dipole mark was frequently lost usually due to omission of a partial charge on the central C atom.
		The dipoles do not cancel out OR Because the molecule is nonsymmetrical \checkmark	1	ALLOW partial charges do not cancel IGNORE charges do not cancel ALLOW (the more) electronegative atoms are on one side of the molecule Examiner's Comments Most candidates correctly focussed upon the fact that the molecule was not symmetrical.
		Total	5	
	a	Repeating pattern \checkmark of oppositely charged ions \checkmark	2	ALLOW 'regular' OR 'alternating' OR 'uniform (arrangement)' for 'repeating pattern' ALLOW positive and negative ions OR aluminium ions and fluoride ions ALLOW oppositely charged ions from a labelled diagram Examiner's Comments Most candidates were quick to describe ionic bonding by making reference to ions of opposite charge and so were awarded the first mark. Very few went on to describe the repeating or regular nature of the lattice.
				For first mark: If 8 electrons are shown in the cation then the 'extra' electron in the anion must match the symbol chosen for the electrons in the cation IGNORE inner shells IGNORE circles ALLOW one mark if both electron arrangements and charges are correct but only one F is drawn. ALLOW one mark if incorrect symbol is the only error, unless ECF from 2(a) in which both marks are available DO NOT ALLOW any marks for BF_{3} ALLOW 3[$\left.\mathrm{F}^{-}\right] 3[\mathrm{~F}]^{-}\left[\mathrm{F}^{-}\right]_{3}$ (brackets not required) DO NOT ALLOW $\left[\mathrm{F}_{3}\right]^{-}\left[\mathrm{F}_{3}\right]^{3-}[3 \mathrm{~F}]^{3-}[\mathrm{F}]_{3}{ }^{-}$ Examiner's Comments This question was answered by the majority of candidates. It is noteworthy, however, that some candidates gave unacceptable versions of the diagram when attempting to show the presence of three fluoride ions e.g. $[\mathrm{F}]_{3}{ }^{-}$suggests one anion. with a single negative charge, consisting of three F species.
		A shared pair of electrons.	1	Examiner's Comments

2.2.2 Bonding and Structure

				The quality of answers to this question were very high. Only the weakest of candidates failed to state that it is a pair (or two of electrons which are shared.

2.2.2 Bonding and Structure

0

	One Hydrogen bond between H in one water molecule and a lone pair of O in an adjacent water molecule \checkmark	All Hydrogen bonds must hit a lone pair Hydrogen bond does NOT need to be labelled but it must be different from the covalent bond if it is not labelled ALLOW H-bond as label ALLOW only one lone pair on O atom ALLOW additional, correctly drawn Hydrogen bonded water molecules with correct dipoles DO NOT ALLOW more than two lone pairs on O atom Examiner's Comments Nearly all candidates answered this familiar question very well. Failure to show full dipoles on both molecules was the most common omission by some margin, whilst omitting to show a lone pair or not showing it involved in the hydrogen bond was seen comparatively more rarely.
	Property 1 Ice is less dense than water \checkmark Explanation 1 The molecules in ice are held apart by hydrogen bonds \checkmark OR ice has an open lattice $\mathbf{O R}$ structure Property 2 Ice has a relatively high melting point $\sqrt{ }$ Explanation 2 Hydrogen bonds are relatively strong OR Hydrogen bonds are stronger (than other intermolecular attractions or forces) OR More energy is needed to overcome hydrogen bonding	ALLOW ice floats (on water) ALLOW ice contracts when it melts ALLOW ice (water) has a higher melting point than expected OR predicted ALLOW other expressions which convey that the melting point is anomalously high e.g. 'Ice has an unusually high melting point' IGNORE boiling point IGNORE the following unqualified statements 'Ice has a higher melting point' or 'Ice has a high melting point' IGNORE references to surface tension as a property IGNORE explanations of surface tension ALLOW hydrogen bonds are the strongest intermolecular attraction or force DO NOT ALLOW 'hydrogen bonds are strong' but ALLOW this as part of a qualified statement (e.g. 'hydrogen bonds are strong compared with weak van der Waals forces') Examiner's Comments This question proved to be one of the more challenging ones on this paper. Of the possible properties of ice, the fact that ice is less dense than water was quoted often and was then supported by the correct explanation. It was when it came to discussing the anomalous melting point of water that candidates found it more difficult. Weaker candidates were content to give a very brief account, simply saying that ice's melting point was high $\left(0^{\circ} \mathrm{C}\right.$ is not a particularly high temperature) because hydrogen bonds are strong (a hydrogen bond is not a strong bond in comparison to a typical ionic bond). Such answers lacked the required comparison in terms of this property relative to other small molecules or of the strength of the hydrogen bonds in relation to other intermolecular forces.

	b	${ }^{x^{x}} \begin{array}{lllll} x_{x} & \stackrel{x}{\dot{x}} & \mathrm{C} & \mathrm{C} & \stackrel{x}{\dot{x}} \\ \mathrm{O}^{x} & x_{x}^{x} \end{array}$ 'dot-and-cross' of $\mathrm{CO}_{2} \sqrt{ }$	1	Lone pairs on O must be seen Lone pairs may be seen as 4 individual electrons ALLOW correct use of three different symbols Examiner's Comments The 'dot-and-cross' diagram of the bonding in CO_{2} was well known.
		Total	7	
		(Trigonal) Pyramidal \checkmark (Sb has) three bonding pairs AND one lone pair of electrons \checkmark Pairs of electrons repel \checkmark	3	ALLOW alternative phrases / words to repel eg 'push apart' ALLOW lone pairs repel more than bonding pairs ALLOW bonds for bonded pairs ALLOW Ip and bp IGNORE electrons repel DO NOT ALLOW atoms repel Examiner's Comments This question was well answered. Many candidates approached this question in a systematic manner and consequently gained marks for stating the number of bonding and lone pairs around the nitrogen atom and used this to determine the molecular shape. Centres are advised to demonstrate this method of addressing this type of question.
		There is a difference in electronegativities (between Sb and $\mathrm{C} /$) OR (Sb-Cl) bonds are polar OR have a dipole OR Dipoles seen on the diagram \checkmark The molecule is not symmetrical AND dipoles do not cancel \checkmark	2	ALLOW Because Cl is more electronegative (than Sb) OR Because Sb is more electronegative (than C/) ALLOW description that electrons are drawn along a covalent bond IGNORE single $\delta+$ or single δ - for dipole IGNORE diagram if M1 awarded in text ALLOW partial charges do not cancel IGNORE references to lone pair causing dipoles Examiner's Comments This question was relatively challenging with the need for the candidate first to refer to the polar nature of the $\mathrm{Sb}-\mathrm{Cl}$ bond and then to note that the shape of the molecule prevents these individual dipoles from cancelling out. It was rare for candidates picked up both marks.

2.2.2 Bonding and Structure

2.2.2 Bonding and Structure \qquad
\square
.
\qquad

\square
 D , , , , \square , ,

